dc.contributor.author
Delle Site, Luigi
dc.contributor.author
Hartmann, Carsten
dc.date.accessioned
2024-09-09T11:13:36Z
dc.date.available
2024-09-09T11:13:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44843
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44553
dc.description.abstract
In this paper, we study computationally feasible bounds for relative free energies between two many-particle systems. Specifically, we consider systems out of equilibrium that admit a nonequilibrium steady state that is reached asymptotically in the long-time limit. The bounds that we suggest are based on the well-known Bogoliubov inequality and variants of Gibbs' and Donsker–Varadhan variational principles. As a general paradigm, we consider systems of oscillators coupled to heat baths at different temperatures. For such systems, we define the free energy of the system relative to any given reference system in terms of the Kullback–Leibler divergence between steady states. By employing a two-sided Bogoliubov inequality and a mean-variance approximation of the free energy (or cumulant generating function), we can efficiently estimate the free energy cost needed in passing from the reference system to the system out of equilibrium (characterised by a temperature gradient). A specific test case to validate our bounds are harmonic oscillator chains with ends that are coupled to Langevin thermostats at different temperatures; such a system is simple enough to allow for analytic calculations and general enough to be used as a prototype to estimate, e.g. heat fluxes or interface effects in a larger class of nonequilibrium particle systems.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Nonequilibrium free energy
en
dc.subject
Bogoliubov inequality
en
dc.subject
heat conduction
en
dc.subject
oscillator chains
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Computationally feasible bounds for the free energy of nonequilibrium steady states, applied to simple models of heat conduction
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2391484
dcterms.bibliographicCitation.doi
10.1080/00268976.2024.2391484
dcterms.bibliographicCitation.journaltitle
Molecular Physics
dcterms.bibliographicCitation.number
7-8
dcterms.bibliographicCitation.volume
123
dcterms.bibliographicCitation.url
https://doi.org/10.1080/00268976.2024.2391484
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1362-3028
refubium.resourceType.provider
WoS-Alert