dc.contributor.author
Sadovek, Nikola
dc.date.accessioned
2024-11-11T09:20:12Z
dc.date.available
2024-11-11T09:20:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44838
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44548
dc.description.abstract
The Billiard Configuration Space was first introduced by Farber and Tabachnikov to explore the number of periodic billiard trajectories within a smooth, strictly convex domain in Euclidean space. Estimating the Lusternik–Schnirelmann category of the Billiard Configuration Space for a sphere is crucial for establishing bounds on the number of such periodic trajectories. A related concept—topological complexity—was introduced by Farber to address problems in motion planning. Farber, in collaboration with Yuzvinsky and later with Grant, computed the topological complexity of the (standard) Configuration Space in a series of papers.
This thesis aims to extend these ideas by providing bounds on the topological complexity and calculating the Lusternik–Schnirelmann category of the Billiard Configuration Space using obstruction theory. Furthermore, we present two Salvetti-type cellular models: the first is applied to compute the fundamental group of the Billiard Configuration Space, while the second allows for the application of obstruction theory.
en
dc.format.extent
44 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Topological Complexity
en
dc.subject
Obstruction Theory
en
dc.subject.ddc
500 Natural sciences and mathematics::510 Mathematics::514 Topology
dc.title
On Topological Complexity of Billiard Configuration Spaces
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-44838-8
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
yes
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access