dc.contributor.author
Hanu, Matei
dc.contributor.author
Weissmann, Simon
dc.date.accessioned
2024-09-05T10:25:34Z
dc.date.available
2024-09-05T10:25:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44808
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44518
dc.description.abstract
The ensemble Kalman inversion (EKI), a recently introduced optimisation method for solving inverse problems, is widely employed for the efficient and derivative-free estimation of unknown parameters. Specifically in cases involving ill-posed inverse problems and high-dimensional parameter spaces, the scheme has shown promising success. However, in its general form, the EKI does not take constraints into account, which are essential and often stem from physical limitations or specific requirements. Based on a log-barrier approach, we suggest adapting the continuous-time formulation of EKI to incorporate convex inequality constraints. We underpin this adaptation with a theoretical analysis that provides lower and upper bounds on the ensemble collapse, as well as convergence to the constraint optimum for general nonlinear forward models. Finally, we showcase our results through two examples involving partial differential equations.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ensemble Kalman inversion
en
dc.subject
Tikhonov regularisation
en
dc.subject
derivative-free optimisation
en
dc.subject
convex inequality constraints
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On the ensemble Kalman inversion under inequality constraints
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
095009
dcterms.bibliographicCitation.doi
10.1088/1361-6420/ad6a33
dcterms.bibliographicCitation.journaltitle
Inverse Problems
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.volume
40
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6420/ad6a33
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6420
refubium.resourceType.provider
WoS-Alert