Objectives: To compare image quality of deep learning reconstruction (AiCE) for radiomics feature extraction with filtered back projection (FBP), hybrid iterative reconstruction (AIDR 3D), and model-based iterative reconstruction (FIRST).
Methods: Effects of image reconstruction on radiomics features were investigated using a phantom that realistically mimicked a 65-year-old patient's abdomen with hepatic metastases. The phantom was scanned at 18 doses from 0.2 to 4 mGy, with 20 repeated scans per dose. Images were reconstructed with FBP, AIDR 3D, FIRST, and AiCE. Ninety-three radiomics features were extracted from 24 regions of interest, which were evenly distributed across three tissue classes: normal liver, metastatic core, and metastatic rim. Features were analyzed in terms of their consistent characterization of tissues within the same image (intraclass correlation coefficient >= 0.75), discriminative power (Kruskal-Wallis test p value < 0.05), and repeatability (overall concordance correlation coefficient >= 0.75).
Results: The median fraction of consistent features across all doses was 6%, 8%, 6%, and 22% with FBP, AIDR 3D, FIRST, and AiCE, respectively. Adequate discriminative power was achieved by 48%, 82%, 84%, and 92% of features, and 52%, 20%, 17%, and 39% of features were repeatable, respectively. Only 5% of features combined consistency, discriminative power, and repeatability with FBP, AIDR 3D, and FIRST versus 13% with AiCE at doses above 1 mGy and 17% at doses >= 3 mGy. AiCE was the only reconstruction technique that enabled extraction of higher-order features.
Conclusions: AiCE more than doubled the yield of radiomics features at doses typically used clinically. Inconsistent tissue characterization within CT images contributes significantly to the poor stability of radiomics features.