dc.contributor.author
Cui, Yongxing
dc.contributor.author
Hu, Junxi
dc.contributor.author
Peng, Shushi
dc.contributor.author
Delgado-Baquerizo, Manuel
dc.contributor.author
Moorhead, Daryl L.
dc.contributor.author
Sinsabaugh, Robert L.
dc.contributor.author
Xu, Xiaofeng
dc.contributor.author
Geyer, Kevin M.
dc.contributor.author
Fang, Linchuan
dc.contributor.author
Smith, Pete
dc.date.accessioned
2024-10-07T09:55:44Z
dc.date.available
2024-10-07T09:55:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44371
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44083
dc.description.abstract
Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
extracellular enzymatic activity
en
dc.subject
global change factors
en
dc.subject
microbial metabolisms
en
dc.subject
resource limitations
en
dc.subject
soil carbon cycling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2308176
dcterms.bibliographicCitation.doi
10.1002/advs.202308176
dcterms.bibliographicCitation.journaltitle
Advanced Science
dcterms.bibliographicCitation.number
35
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1002/advs.202308176
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2198-3844