dc.contributor.author
Fuksa, Jonáš
dc.contributor.author
Götte, M.
dc.contributor.author
Roth, I.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2024-07-04T12:56:10Z
dc.date.available
2024-07-04T12:56:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44133
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43843
dc.description.abstract
Recent years have witnessed an increased interest in recovering dynamical laws of complex systems in a largely data-driven fashion under meaningful hypotheses. In this work, we propose a scalable and numerically robust method for this task, utilizing efficient block-sparse tensor train representations of dynamical laws, inspired by similar approaches in quantum many-body systems. Low-rank tensor train representations have been previously derived for dynamical laws of one-dimensional systems. We extend this result to efficient representations of systems with K-mode interactions and controlled approximations of systems with decaying interactions. We further argue that natural structure assumptions on dynamical laws, such as bounded polynomial degrees, can be exploited in the form of block-sparse support patterns of tensor-train cores. Additional structural similarities between interactions of certain modes can be accounted for by weight sharing within the ansatz. To make use of these structure assumptions, we propose a novel optimization algorithm, block-sparsity restricted alternating least squares with gauge-mediated weight sharing. The algorithm is inspired by similar notions in machine learning and achieves a significant improvement in performance over previous approaches. We demonstrate the performance of the method numerically on three one-dimensional systems—the Fermi–Pasta–Ulam–Tsingou system, rotating magnetic dipoles and point particles interacting via modified Lennard–Jones potentials, observing a highly accurate and noise-robust recovery.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
dynamical laws
en
dc.subject
complex systems
en
dc.subject
quantum inspired approach
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
A quantum inspired approach to learning dynamical laws from data—block-sparsity and gauge-mediated weight sharing
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
025064
dcterms.bibliographicCitation.doi
10.1088/2632-2153/ad4f4e
dcterms.bibliographicCitation.journaltitle
Machine Learning: Science and Technology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-2153/ad4f4e
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-2153
refubium.resourceType.provider
WoS-Alert