dc.contributor.author
Thomson, Steven J.
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2024-09-16T08:45:10Z
dc.date.available
2024-09-16T08:45:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44068
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43777
dc.description.abstract
The study of many-body quantum dynamics in strongly correlated systems is extremely challenging. To date, few numerical methods exist that are capable of simulating the non-equilibrium dynamics of two-dimensional quantum systems, which is partly due to complexity theoretic obstructions. In this work, we present a technique able to overcome this obstacle, by combining continuous unitary flow techniques with the newly developed method of scrambling transforms. We overcome the assumption that approximately diagonalizing the Hamiltonian cannot lead to reliable predictions for relatively long times. Rather, we show that the method achieves good accuracy in both localized and delocalized phases and makes reliable predictions for a number of quantities including infinite-temperature autocorrelation functions. We complement our findings with rigorous incremental bounds on the truncation error. Our approach shows that, in practice, the exploration of intermediate-scale time evolution may be more feasible than is commonly assumed, challenging near-term quantum simulators.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational science
en
dc.subject
Condensed-matter physics
en
dc.subject
Information theory and computation
en
dc.subject
Statistical physics, thermodynamics and nonlinear dynamics
en
dc.subject
Theoretical physics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Unravelling quantum dynamics using flow equations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41567-024-02549-2
dcterms.bibliographicCitation.journaltitle
Nature Physics
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.pagestart
1401
dcterms.bibliographicCitation.pageend
1406
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41567-024-02549-2
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1745-2481