dc.contributor.author
Alvarez, Jose M.
dc.contributor.author
Bringas Colmenarejo, Alejandra
dc.contributor.author
Elobaid, Alaa
dc.contributor.author
Fabbrizzi, Simone
dc.contributor.author
Fahimi, Miriam
dc.contributor.author
Ferrara, Antonio
dc.contributor.author
Ghodsi, Siama
dc.contributor.author
Mougan, Carlos
dc.contributor.author
Papageorgiou, Ioanna
dc.contributor.author
Reyero, Paula
dc.date.accessioned
2024-06-25T11:45:37Z
dc.date.available
2024-06-25T11:45:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43964
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43673
dc.description.abstract
The literature addressing bias and fairness in AI models (fair-AI) is growing at a fast pace, making it difficult for novel researchers and practitioners to have a bird’s-eye view picture of the field. In particular, many policy initiatives, standards, and best practices in fair-AI have been proposed for setting principles, procedures, and knowledge bases to guide and operationalize the management of bias and fairness. The first objective of this paper is to concisely survey the state-of-the-art of fair-AI methods and resources, and the main policies on bias in AI, with the aim of providing such a bird’s-eye guidance for both researchers and practitioners. The second objective of the paper is to contribute to the policy advice and best practices state-of-the-art by leveraging from the results of the NoBIAS research project. We present and discuss a few relevant topics organized around the NoBIAS architecture, which is made up of a Legal Layer, focusing on the European Union context, and a Bias Management Layer, focusing on understanding, mitigating, and accounting for bias.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Artificial Intelligence
en
dc.subject
Policy advice
en
dc.subject
Best practices
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Policy advice and best practices on bias and fairness in AI
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
31
dcterms.bibliographicCitation.doi
10.1007/s10676-024-09746-w
dcterms.bibliographicCitation.journaltitle
Ethics and Information Technology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
26
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10676-024-09746-w
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1572-8439
refubium.resourceType.provider
WoS-Alert