dc.contributor.author
Vogel, K.
dc.contributor.author
Sieg, T.
dc.contributor.author
Veh, G.
dc.contributor.author
Fiedler, B.
dc.contributor.author
Moran, Thomas
dc.contributor.author
Peter, Madlen
dc.contributor.author
Rottler, E.
dc.contributor.author
Bronstert, Axel
dc.date.accessioned
2024-06-25T07:54:11Z
dc.date.available
2024-06-25T07:54:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43946
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43656
dc.description.abstract
Estimating the frequency and magnitude of natural hazards largely hinges on stationary models, which do not account for changes in the climatological, hydrological, and geophysical baseline conditions. Using five diverse case studies encompassing various natural hazard types, we present advanced statistical and machine learning methods to analyze and model transient states from long-term inventory data. A novel storminess metric reveals increasing European winter windstorm severity from 1950 to 2010. Non-stationary extreme value models quantify trends, seasonal shifts, and regional differences in extreme precipitation for Germany between 1941 and 2021. Utilizing quantile sampling and empirical mode decomposition on 148 years of daily weather and discharge data in the European Alps, we assess the impacts of changing snow cover, precipitation, and anthropogenic river network modifications on river runoff. Moreover, a probabilistic framework estimates return periods of glacier lake outburst floods in the Himalayas, demonstrating large differences in 100-year flood levels. Utilizing a Bayesian change point algorithm, we track the onset of increased seismicity in the southern central United States and find correlation with wastewater injections into deep wells. In conclusion, data science reveals transient states for very different natural hazard types, characterized by diverse forms of change, ranging from gradual trends to sudden change points and from altered seasonality to overall intensity variations. In synergy with the physical understanding of Earth science, we gain important new insights into the dynamics of the studied hazards and their possible mechanisms.
en
dc.format.extent
29 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
non-stationary hazard models
en
dc.subject
European winter windstorms
en
dc.subject
extreme precipitation in Germany
en
dc.subject
river runoff in European Alps
en
dc.subject
Himalayan glacier lake outburst floods
en
dc.subject
induced seismicity in Oklahoma
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Natural Hazards in a Changing World: Methods for Analyzing Trends and Non-Linear Changes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2023EF003553
dcterms.bibliographicCitation.doi
10.1029/2023EF003553
dcterms.bibliographicCitation.journaltitle
Earth's Future
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2023EF003553
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2328-4277
refubium.resourceType.provider
WoS-Alert