To create coherent visual experiences, the brain spatially integrates the complex and dynamic information it receives from the environment. We previously demonstrated that feedback-related alpha activity carries stimulus-specific information when two spatially and temporally coherent naturalistic inputs can be integrated into a unified percept. In this study, we sought to determine whether such integration-related alpha dynamics are triggered by categorical coherence in visual inputs. In an EEG experiment, we manipulated the degree of coherence by presenting pairs of videos from the same or different categories through two apertures in the left and right visual hemifields. Critically, video pairs could be video-level coherent (i.e., stem from the same video), coherent in their basic-level category, coherent in their superordinate category, or incoherent (i.e., stem from videos from two entirely different categories). We conducted multivariate classification analyses on rhythmic EEG responses to decode between the video stimuli in each condition. As the key result, we significantly decoded the video-level coherent and basic-level coherent stimuli, but not the superordinate coherent and incoherent stimuli, from cortical alpha rhythms. This suggests that alpha dynamics play a critical role in integrating information across space, and that cortical integration processes are flexible enough to accommodate information from different exemplars of the same basic-level category.
NEW & NOTEWORTHY Our brain integrates dynamic inputs across the visual field to create coherent visual experiences. Such integration processes have previously been linked to cortical alpha dynamics. In this study, the integration-related alpha activity was observed not only when snippets from the same video were presented, but also when different video snippets from the same basic-level category were presented, highlighting the flexibility of neural integration processes.