dc.contributor.author
Donati, Luca
dc.contributor.author
Schütte, Christof
dc.contributor.author
Weber, Marcus
dc.date.accessioned
2025-06-27T06:12:16Z
dc.date.available
2025-06-27T06:12:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43863
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43573
dc.description.abstract
We have investigated how Langevin dynamics is affected by the friction coefficient using the novel algorithm ISOKANN, which combines the transfer operator approach with modern machine learning techniques. ISOKANN describes the dynamics in terms of an invariant subspace projection of the Koopman operator defined in the entire state space, avoiding approximations due to dimensionality reduction and discretization. Our results are consistent with the Kramers turnover and show that in the low and moderate friction regimes, metastable macro-states and transition rates are defined in phase space, not only in position space.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Langevin dynamics
en
dc.subject
Kramers turnover
en
dc.subject
reaction rate theory
en
dc.subject
machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
The Kramers turnover in terms of a macro-state projection on phase space
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2356748
dcterms.bibliographicCitation.doi
10.1080/00268976.2024.2356748
dcterms.bibliographicCitation.journaltitle
Molecular Physics
dcterms.bibliographicCitation.pagestart
7-8
dcterms.bibliographicCitation.volume
123
dcterms.bibliographicCitation.url
https://doi.org/10.1080/00268976.2024.2356748
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1362-3028
refubium.resourceType.provider
WoS-Alert