dc.contributor.author
Bryant, Patrick
dc.contributor.author
Kelkar, Atharva
dc.contributor.author
Guljas, Andrea
dc.contributor.author
Clementi, Cecilia
dc.contributor.author
Noé, Frank
dc.date.accessioned
2024-06-03T08:21:22Z
dc.date.available
2024-06-03T08:21:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43730
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43445
dc.description.abstract
Protein-ligand docking is an established tool in drug discovery and development to narrow down potential therapeutics for experimental testing. However, a high-quality protein structure is required and often the protein is treated as fully or partially rigid. Here we develop an AI system that can predict the fully flexible all-atom structure of protein-ligand complexes directly from sequence information. We find that classical docking methods are still superior, but depend upon having crystal structures of the target protein. In addition to predicting flexible all-atom structures, predicted confidence metrics (plDDT) can be used to select accurate predictions as well as to distinguish between strong and weak binders. The advances presented here suggest that the goal of AI-based drug discovery is one step closer, but there is still a way to go to grasp the complexity of protein-ligand interactions fully. Umol is available at: https://github.com/patrickbryant1/Umol.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Molecular medicine
en
dc.subject
Protein structure predictions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Structure prediction of protein-ligand complexes from sequence information with Umol
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
4536
dcterms.bibliographicCitation.doi
10.1038/s41467-024-48837-6
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-48837-6
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723