dc.contributor.author
Pirnay, Niklas
dc.contributor.author
Ulitzsch, Vincent
dc.contributor.author
Wilde, Frederik
dc.contributor.author
Eisert, Jens
dc.contributor.author
Seifert, Jean-Pierre
dc.date.accessioned
2024-05-15T11:34:32Z
dc.date.available
2024-05-15T11:34:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43564
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43280
dc.description.abstract
It is unclear to what extent quantum algorithms can outperform classical algorithms for problems of combinatorial optimization. In this work, by resorting to computational learning theory and cryptographic notions, we give a fully constructive proof that quantum computers feature a super-polynomial advantage over classical computers in approximating combinatorial optimization problems. Specifically, by building on seminal work by Kearns and Valiant, we provide special instances that are hard for classical computers to approximate up to polynomial factors. Simultaneously, we give a quantum algorithm that can efficiently approximate the optimal solution within a polynomial factor. The quantum advantage in this work is ultimately borrowed from Shor’s quantum algorithm for factoring. We introduce an explicit and comprehensive end-to-end construction for the advantage bearing instances. For these instances, quantum computers have, in principle, the power to approximate combinatorial optimization solutions beyond the reach of classical efficient algorithms.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
quantum algorithms
en
dc.subject
classical algorithms
en
dc.subject
problems of combinatorial optimization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
An in-principle super-polynomial quantum advantage for approximating combinatorial optimization problems via computational learning theory
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
eadj5170
dcterms.bibliographicCitation.doi
10.1126/sciadv.adj5170
dcterms.bibliographicCitation.journaltitle
Science Advances
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1126/sciadv.adj5170
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2375-2548
refubium.resourceType.provider
WoS-Alert