dc.contributor.author
Gil-Fuster, Elies
dc.contributor.author
Eisert, Jens
dc.contributor.author
Dunjko, Vedran
dc.date.accessioned
2024-04-17T14:14:53Z
dc.date.available
2024-04-17T14:14:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43296
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43012
dc.description.abstract
One of the most natural connections between quantum and classical machine learning has been established in the context of kernel methods. Kernel methods rely on kernels, which are inner products of feature vectors living in large feature spaces. Quantum kernels are typically evaluated by explicitly constructing quantum feature states and then taking their inner product, here called embedding quantum kernels. Since classical kernels are usually evaluated without using the feature vectors explicitly, we wonder how expressive embedding quantum kernels are. In this work, we raise the fundamental question: can all quantum kernels be expressed as the inner product of quantum feature states? Our first result is positive: Invoking computational universality, we find that for any kernel function there always exists a corresponding quantum feature map and an embedding quantum kernel. The more operational reading of the question is concerned with efficient constructions, however. In a second part, we formalize the question of universality of efficient embedding quantum kernels. For shift-invariant kernels, we use the technique of random Fourier features to show that they are universal within the broad class of all kernels which allow a variant of efficient Fourier sampling. We then extend this result to a new class of so-called composition kernels, which we show also contains projected quantum kernels introduced in recent works. After proving the universality of embedding quantum kernels for both shift-invariant and composition kernels, we identify the directions towards new, more exotic, and unexplored quantum kernel families, for which it still remains open whether they correspond to efficient embedding quantum kernels.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
quantum machine learning
en
dc.subject
quantum kernels
en
dc.subject
kernel methods
en
dc.subject
supervised learning
en
dc.subject
quantum learning theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
On the expressivity of embedding quantum kernels
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
98191
dcterms.bibliographicCitation.articlenumber
025003
dcterms.bibliographicCitation.doi
10.1088/2632-2153/ad2f51
dcterms.bibliographicCitation.journaltitle
Machine Learning: Science and Technology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.originalpublisherplace
Bristol
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-2153/ad2f51
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-2153