dc.contributor.author
Karimpouli, Sadegh
dc.contributor.author
Kwiatek, Grzegorz
dc.contributor.author
Martínez-Garzón, Patricia
dc.contributor.author
Dresen, Georg
dc.contributor.author
Bohnhoff, Marco
dc.date.accessioned
2024-04-12T06:56:58Z
dc.date.available
2024-04-12T06:56:58Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43181
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42897
dc.description.abstract
Earthquake forecasting poses significant challenges, especially due to the elusive nature of stress states in fault systems. To tackle this problem, we use features derived from seismic catalogues obtained from acoustic emission (AE) signals recorded during triaxial stick-slip experiments on natural fractures in three Westerly granite samples. We extracted 47 physically explainable features from AE data that described spatio-temporal evolution of stress and damage in the vicinity of the fault surface. These features are then subjected to unsupervised clustering using the K-means method, revealing three distinct stages with a proper agreement with the temporal evolution of stress. The recovered stages correspond to the mechanical behaviour of the rock, characterized as initial stable (elastic) deformation, followed by a transitional stage leading to an unstable deformation prior to failure. Notably, AE rate, clustering-localization features, fractal dimension, b-value, interevent time distribution, and correlation integral are identified as significant features for the unsupervised clustering. The systematically evolving stages can provide valuable insights for characterizing preparatory processes preceding earthquake events associated with geothermal activities and waste-water injections. In order to address the upscaling issue, we propose to use the most important features and, in case of normalization challenge, removing non-universal features, such as AE rate. Our findings hold promise for advancing earthquake prediction methodologies based on laboratory experiments and catalogue-driven features.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Acoustic properties
en
dc.subject
Earthquake interaction
en
dc.subject
forecasting and prediction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Unsupervised clustering of catalogue-driven features for characterizing temporal evolution of labquake stress
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1093/gji/ggae071
dcterms.bibliographicCitation.journaltitle
Geophysical Journal International
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
755
dcterms.bibliographicCitation.pageend
771
dcterms.bibliographicCitation.volume
237
dcterms.bibliographicCitation.url
https://doi.org/10.1093/gji/ggae071
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1365-246X
refubium.resourceType.provider
WoS-Alert