dc.contributor.author
Vielhaben, Johanna
dc.contributor.author
Lapuschkin, Sebastian
dc.contributor.author
Montavon, Grégoire
dc.contributor.author
Samek, Wojciech
dc.date.accessioned
2024-04-12T06:08:14Z
dc.date.available
2024-04-12T06:08:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43175
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42891
dc.description.abstract
The field of eXplainable Artificial Intelligence (XAI) has witnessed significant advancements in recent years. However, the majority of progress has been concentrated in the domains of computer vision and natural language processing. For time series data, where the input itself is often not interpretable, dedicated XAI research is scarce. In this work, we put forward a virtual inspection layer for transforming the time series to an interpretable representation and allows to propagate relevance attributions to this representation via local XAI methods. In this way, we extend the applicability of XAI methods to domains (e.g. speech) where the input is only interpretable after a transformation. In this work, we focus on the Fourier Transform which, is prominently applied in the preprocessing of time series, with Layer-wise Relevance Propagation (LRP) and refer to our method as DFT-LRP. We demonstrate the usefulness of DFT-LRP in various time series classification settings like audio and medical data. We showcase how DFT-LRP reveals differences in the classification strategies of models trained in different domains (e.g., time vs. frequency domain) or helps to discover how models act on spurious correlations in the data.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Interpretability
en
dc.subject
Explainable Artificial Intelligence
en
dc.subject
Discrete Fourier Transform
en
dc.subject
Invertible transformations
en
dc.subject
Audio classification
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Explainable AI for time series via Virtual Inspection Layers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
110309
dcterms.bibliographicCitation.doi
10.1016/j.patcog.2024.110309
dcterms.bibliographicCitation.journaltitle
Pattern Recognition
dcterms.bibliographicCitation.volume
150
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.patcog.2024.110309
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1873-5142
refubium.resourceType.provider
WoS-Alert