dc.contributor.author
Dubiner, Shahar
dc.contributor.author
Aguilar, Rocío
dc.contributor.author
Anderson, Rodolfo O.
dc.contributor.author
Arenas Moreno, Diego M.
dc.contributor.author
Avila, Luciano J.
dc.contributor.author
Boada-Viteri, Estefania
dc.contributor.author
Castillo, Martin
dc.contributor.author
Chapple, David G.
dc.contributor.author
Chukwuka, Christian O.
dc.contributor.author
Itescu, Yuval
dc.date.accessioned
2024-03-21T13:33:26Z
dc.date.available
2024-03-21T13:33:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42973
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42687
dc.description.abstract
Aim
Squamate fitness is affected by body temperature, which in turn is influenced by environmental temperatures and, in many species, by exposure to solar radiation. The biophysical drivers of body temperature have been widely studied, but we lack an integrative synthesis of actual body temperatures experienced in the field, and their relationships to environmental temperatures, across phylogeny, behaviour and climate.
Location
Global (25 countries on six continents).
Taxa
Squamates (210 species, representing 25 families).
Methods
We measured the body temperatures of 20,231 individuals of squamates in the field while they were active. We examined how body temperatures vary with substrate and air temperatures across taxa, climates and behaviours (basking and diel activity).
Results
Heliothermic lizards had the highest body temperatures. Their body temperatures were the most weakly correlated with substrate and air temperatures. Body temperatures of non-heliothermic diurnal lizards were similar to heliotherms in relation to air temperature, but similar to nocturnal species in relation to substrate temperatures. The correlation of body temperature with air and substrate temperatures was stronger in diurnal snakes and non-heliothermic lizards than in heliotherms. Body-substrate and body-air temperature correlations varied with mean annual temperatures in all diurnal squamates, especially in heliotherms. Thermal relations vary with behaviour (heliothermy, nocturnality) in cold climates but converge towards the same relation in warm climates. Non-heliotherms and nocturnal species body temperatures are better explained by substrate temperature than by air temperature. Body temperature distributions become left-skewed in warmer-bodied species, especially in colder climates.
Main Conclusions
Squamate body temperatures, their frequency distributions and their relation to environmental temperature, are globally influenced by behavioural and climatic factors. For all temperatures and climates, heliothermic species' body temperatures are consistently higher and more stable than in other species, but in regions with warmer climate these differences become less pronounced. A comparable variation was found in non-heliotherms, but in not nocturnal species whose body temperatures were similar to air and substrate irrespective of the macroclimatic context.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
air temperature
en
dc.subject
body temperature distribution
en
dc.subject
substrate temperature
en
dc.subject
thermal ecology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
A global analysis of field body temperatures of active squamates in relation to climate and behaviour
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e13808
dcterms.bibliographicCitation.doi
10.1111/geb.13808
dcterms.bibliographicCitation.journaltitle
Global Ecology and Biogeography
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1111/geb.13808
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1466-8238
refubium.resourceType.provider
WoS-Alert