dc.contributor.author
Hausladen, Carina I.
dc.contributor.author
Fochmann, Martin
dc.contributor.author
Mohr, Peter
dc.date.accessioned
2024-03-20T08:08:52Z
dc.date.available
2024-03-20T08:08:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42925
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42639
dc.description.abstract
Behavioral and experimental economics have conventionally employed text data to facilitate the interpretation of decision-making processes. This paper introduces a novel methodology, leveraging text data for predictive analytics rather than mere explanation. We detail a supervised classification framework that interprets patterns in chat text to estimate the likelihood of associated numerical outcomes. Despite the unique advantages of experimental data in correlating textual and numerical information for predictive modeling, challenges such as limited sample sizes and potential data skewness persist. To address these, we propose a comprehensive methodological framework aimed at optimizing predictive modeling configurations, particularly in small experimental behavioral research datasets. We also present behavioral experimental data from a preregistered tax evasion game (n=324), demonstrating that chat behavior is not influenced by experimenter demand effects. This establishes chat text as an unbiased variable, enhancing its validity for prediction. Our findings further indicate that beliefs about others’ dishonesty, lying attitudes, and risk preferences significantly impact compliance decisions.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Supervised classification
en
dc.subject
Experimental research
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Predicting compliance: Leveraging chat data for supervised classification in experimental research
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
102164
dcterms.bibliographicCitation.doi
10.1016/j.socec.2024.102164
dcterms.bibliographicCitation.journaltitle
Journal of Behavioral and Experimental Economics
dcterms.bibliographicCitation.volume
109
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.socec.2024.102164
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Betriebswirtschaftslehre / Department Finance, Accounting and Taxation (FACTS)
refubium.affiliation.other
Volkswirtschaftslehre
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2214-8051
refubium.resourceType.provider
WoS-Alert