dc.contributor.author
Kolar, Krystof
dc.contributor.author
Zhang, Yiran
dc.contributor.author
Nadj-Perge, Stevan
dc.contributor.author
Oppen, Felix von
dc.contributor.author
Lewandowski, Cyprian
dc.date.accessioned
2024-03-14T13:40:37Z
dc.date.available
2024-03-14T13:40:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42574
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42298
dc.description.abstract
Twisted N-layer graphene (TNG) moiré structures have recently been shown to exhibit robust superconductivity similar to twisted bilayer graphene (TBG). In particular for N=4 and N=5, the phase diagram features a superconducting pocket that extends beyond the nominal full filling of the flat band. These observations are seemingly at odds with the canonical understanding of the low-energy theory of TNG, wherein the TNG Hamiltonian consists of one flat-band sector and accompanying dispersive bands. Using a self-consistent Hartree-Fock treatment, we explain how the phenomenology of TNG can be understood through an interplay of in-plane Hartree and inhomogeneous layer potentials, which cause a reshuffling of electronic bands. We extend our understanding beyond the case of N=5 realized in experiment so far. We describe how the Hartree and layer potentials control the phase diagram for devices with N>5 and tend to preclude exchange-driven correlated phenomena in this limit. To circumvent these electrostatic constraints, we propose a flat-band paradigm that could be realized in large-N devices by taking advantage of two nearly flat sectors acting together to enhance the importance of exchange effects.
en
dc.format.extent
28 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Electronic structure
en
dc.subject
Twisted bilayer graphene
en
dc.subject
Mean field theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Electrostatic fate of N-layer moiré graphene
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97248
dcterms.bibliographicCitation.articlenumber
195148
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.108.195148
dcterms.bibliographicCitation.journaltitle
Physical Review B
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.originalpublishername
APS
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
108 (2023)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevB.108.195148
dcterms.rightsHolder.url
https://journals.aps.org/authors/editorial-policies-open-access#pub-rights
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9950
dcterms.isPartOf.eissn
2469-9969