dc.contributor.author
Fiedler, Bernold
dc.contributor.author
Rocha, Carlos
dc.date.accessioned
2025-01-06T07:53:18Z
dc.date.available
2025-01-06T07:53:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42564
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42288
dc.description.abstract
This sequel continues our exploration (Fiedler and Rocha in Chaos 33:083127, 2023.
https://doi.org/10.1063/5.0147634) of a deceptively “simple” class of global attractors,
called Sturm due to nodal properties. They arise for the semilinear scalar parabolic
PDE
ut = uxx + f (x, u, ux ) (∗)
on the unit interval 0 < x < 1, under Neumann boundary conditions. Thismodels the
interplay of reaction, advection, and diffusion. Our classification is based on the Sturm
meanders, which arise from a shooting approach to the ODE boundary value problem
of equilibrium solutions u = v(x). Specifically, we address meanders with only three
“noses”, each of which is innermost to a nested family of upper or lowermeander arcs.
The Chafee-Infante paradigm of 1974, with cubic nonlinearity f = f (u), features just
two noses.We present, and fully prove, a precise description of global PDE connection
graphs, graded by Morse index, for such gradient-like Morse–Smale systems. The
directed edges denote PDE heteroclinic orbits v1 ↝ v2 between equilibrium vertices
v1, v2 of adjacent Morse index. The connection graphs can be described as a latticelike
structure of Chafee-Infante subgraphs. However, this simple description requires
us to adjoin a single “equilibrium” vertex, formally, at Morse level −1. Surprisingly,
for parabolic PDEs based on irreversible diffusion, the connection graphs then also
exhibit global time reversibility.
en
dc.format.extent
40 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Parabolic partial differential equation
en
dc.subject
Nodal property
en
dc.subject
Connection graph
en
dc.subject
Heteroclinic orbit
en
dc.subject
Morse theory
en
dc.subject
Reversibility
en
dc.subject
Continued fraction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Design of Sturm global attractors 2: Time-reversible Chafee–Infante lattices of 3-nose meanders
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s40863-023-00385-5
dcterms.bibliographicCitation.journaltitle
São Paulo Journal of Mathematical Sciences
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
975
dcterms.bibliographicCitation.pageend
1014
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s40863-023-00385-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2316-9028