dc.contributor.author
Krist, Christina
dc.contributor.author
Kubsch, Marcus
dc.date.accessioned
2024-02-27T15:25:19Z
dc.date.available
2024-02-27T15:25:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42476
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42201
dc.description.abstract
In response to Li et al.'s (2023) and Zhai and Nehm's (2023) commentaries on Zhai et al.'s 2022 paper, Applying Machine Learning to Automatically Assess Scientific Models, we offer the perspective that these commentaries are talking past each other around several key issues related to artificial intelligence (AI) in science education assessment. In part, this “talking past” stems from the fact that each set of authors is approaching the conversation from a distinct perspective: Li et al. address AI through a sociopolitical lens, while Zhai and Nehm address it from a technical lens. These perspectives are not explicitly recognized by either set of authors; and as a result, while they use common terminology, there is a mismatch of (unarticulated) definitions between these two commentaries. Specifically for this commentary, we will focus on the conflation of multiple definitions of bias, which we also find to be a common conflation across the field.
We ultimately view this mismatch as a missed opportunity and a barrier to generative ethical conversations about the role of AI in education. We emphasize here how and why both perspectives are valuable, and argue that they are most valuable when in critical but productive conversation with each other.
en
dc.format.extent
5 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::507 Ausbildung, Forschung, verwandte Themen
dc.title
Bias, bias everywhere
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97010
dc.title.subtitle
A response to Li et al. and Zhai and Nehm
dcterms.bibliographicCitation.doi
10.1002/tea.21913
dcterms.bibliographicCitation.journaltitle
Journal of Research in Science Teaching
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.originalpublisherplace
New York, NY [u.a.]
dcterms.bibliographicCitation.pagestart
2395
dcterms.bibliographicCitation.pageend
2399
dcterms.bibliographicCitation.volume
60 (2023)
dcterms.bibliographicCitation.url
https://onlinelibrary.wiley.com/doi/10.1002/tea.21913
refubium.affiliation
Physik
refubium.affiliation.other
Didaktik der Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0022-4308
dcterms.isPartOf.eissn
1098-2736