dc.contributor.author
Sikorski, A.
dc.contributor.author
Borrell, E. Ribera
dc.contributor.author
Weber, M.
dc.date.accessioned
2024-02-02T08:35:47Z
dc.date.available
2024-02-02T08:35:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42272
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41998
dc.description.abstract
The dominant eigenfunctions of the Koopman operator characterize the metastabilities and slow-timescale dynamics of stochastic diffusion processes. In the context of molecular dynamics and Markov state modeling, they allow for a description of the location and frequencies of rare transitions, which are hard to obtain by direct simulation alone. In this article, we reformulate the eigenproblem in terms of the ISOKANN framework, an iterative algorithm that learns the eigenfunctions by alternating between short burst simulations and a mixture of machine learning and classical numerics, which naturally leads to a proof of convergence. We furthermore show how the intermediate iterates can be used to reduce the sampling variance by importance sampling and optimal control (enhanced sampling), as well as to select locations for further training (adaptive sampling). We demonstrate the usage of our proposed method in experiments, increasing the approximation accuracy by several orders of magnitude.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Koopman operator
en
dc.subject
eigenfunctions
en
dc.subject
stochastic diffusions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Learning Koopman eigenfunctions of stochastic diffusions with optimal importance sampling and ISOKANN
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
013502
dcterms.bibliographicCitation.doi
10.1063/5.0140764
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Physics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
65
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0140764
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7658
refubium.resourceType.provider
WoS-Alert