dc.contributor.author
Hoffmann, Christian
dc.contributor.author
Rentsch, Jakob
dc.contributor.author
Tsunoyama, Taka A.
dc.contributor.author
Chhabra, Akshita
dc.contributor.author
Aguilar Perez, Gerard
dc.contributor.author
Chowdhury, Rajdeep
dc.contributor.author
Trnka, Franziska
dc.contributor.author
Korobeinikov, Aleksandr A.
dc.contributor.author
Shaib, Ali H.
dc.contributor.author
Ewers, Helge
dc.date.accessioned
2024-01-23T11:12:26Z
dc.date.available
2024-01-23T11:12:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42149
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41874
dc.description.abstract
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Biophysical chemistry
en
dc.subject
Membrane trafficking
en
dc.subject
Molecular neuroscience
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Synapsin condensation controls synaptic vesicle sequestering and dynamics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
6730
dcterms.bibliographicCitation.doi
10.1038/s41467-023-42372-6
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-023-42372-6
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert