dc.contributor.author
Runge, Marina
dc.contributor.author
Schmid, Timo
dc.date.accessioned
2024-01-12T09:23:58Z
dc.date.available
2024-01-12T09:23:58Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42019
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41742
dc.description.abstract
In this article, we propose a framework for small area estimation with multiply imputed survey data. Many statistical surveys suffer from (a) high nonresponse rates due to sensitive questions and response burden and (b) too small sample sizes to allow for reliable estimates on (unplanned) disaggregated levels due to budget constraints. One way to deal with missing values is to replace them by several plausible/imputed values based on a model. Small area estimation, such as the model by Fay and Herriot, is applied to estimate regionally disaggregated indicators when direct estimates are imprecise. The framework presented tackles simultaneously multiply imputed values and imprecise direct estimates. In particular, we extend the general class of transformed Fay-Herriot models to account for the additional uncertainty from multiple imputation. We derive three special cases of the Fay-Herriot model with particular transformations and provide point and mean squared error estimators. Depending on the case, the mean squared error is estimated by analytic solutions or resampling methods. Comprehensive simulations in a controlled environment show that the proposed methodology leads to reliable and precise results in terms of bias and mean squared error. The methodology is illustrated by a real data example using European wealth data.
en
dc.format.extent
27 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Fay-Herriot model
en
dc.subject
mean squared error
en
dc.subject
multiple imputation
en
dc.subject
survey statistics
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Small Area with Multiply Imputed Survey Data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.2478/jos-2023-0024
dcterms.bibliographicCitation.journaltitle
Journal of Official Statistics
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
507
dcterms.bibliographicCitation.pageend
533
dcterms.bibliographicCitation.volume
39
dcterms.bibliographicCitation.url
https://doi.org/10.2478/jos-2023-0024
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2001-7367
refubium.resourceType.provider
WoS-Alert