Title:
Leveraging Accelerometer Data for Lameness Detection in Dairy Cows: A Longitudinal Study of Six Farms in Germany
Author(s):
Lavrova, Anastasia I.; Choucair, Alexander; Palmini, Andrea; Stock, Kathrin F.; Kammer, Martin; Querengässer, Friederike; Doherr, Marcus G.; Müller, Kerstin E.; Belik, Vitaly
Year of publication:
2023
Available Date:
2024-01-04T12:55:12Z
Abstract:
Lameness in dairy cows poses a significant challenge to improving animal well-being and optimizing economic efficiency in the dairy industry. To address this, employing automated animal surveillance for early lameness detection and prevention through activity sensors proves to be a promising strategy. In this study, we analyzed activity (accelerometer) data and additional cow-individual and farm-related data from a longitudinal study involving 4860 Holstein dairy cows on six farms in Germany during 2015–2016. We designed and investigated various statistical models and chose a logistic regression model with mixed effects capable of detecting lameness with a sensitivity of 77%. Our results demonstrate the potential of automated animal surveillance and hold the promise of significantly improving lameness detection approaches in dairy livestock.
Part of Identifier:
e-ISSN (online): 2076-2615
Keywords:
dairy cattle
lameness
locomotion score
machine learning
DDC-Classification:
630 Landwirtschaft und verwandte Bereiche
Publication Type:
Wissenschaftlicher Artikel
URL of the Original Publication:
DOI of the Original Publication:
Department/institution:
Veterinärmedizin
Institut für Veterinär-Epidemiologie und Biometrie
Klinik für Klauentiere
Comments:
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.