Strong molecular dopants for organic semiconductors that are stable against diffusion are in demand, enhancing the performance of organic optoelectronic devices. The conventionally used p-dopants based on 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its derivatives “FxTCN(N)Q”, such as 2,3,4,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ), feature limited oxidation strength, especially for modern polymer semiconductors with high ionization energy (IE). These small molecular dopants also exhibit pronounced diffusion in the polymer hosts. Here, we demonstrate a facile approach to increase the oxidation strength of FxTCN(N)Q by coordination with four tris(pentafluorophenyl)borane (BCF) molecules using a single-step solution mixing process, resulting in bulky dopant complexes “FxTCN(N)Q-4(BCF)”. Using a series of polymer semiconductors with IE up to 5.9 eV, we show by optical absorption spectroscopy of solutions and thin films that the efficiency of doping using FxTCN(N)Q-4(BCF) is significantly higher compared to that using FxTCN(N)Q or BCF alone. Electrical transport measurements with the prototypical poly(3-hexylthiophene-2,5-diyl) (P3HT) confirm the higher doping efficiency of F4TCNQ-4(BCF) compared to F4TCNQ. Additionally, the bulkier structure of F4TCNQ-4(BCF) is shown to result in higher stability against drift in P3HT under an applied electric field as compared to F4TCNQ. The simple approach of solution-mixing of readily accessible molecules thus offers access to enhanced molecular p-dopants for the community.