dc.contributor.author
Hadam, Sandra
dc.contributor.author
Würz, Nora
dc.contributor.author
Kreutzmann, Ann-Kristin
dc.contributor.author
Schmid, Timo
dc.date.accessioned
2024-05-30T06:29:41Z
dc.date.available
2024-05-30T06:29:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41438
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41160
dc.description.abstract
The ongoing growth of cities due to better job opportunities is leading to increased labour-related commuter flows in several countries. On the one hand, an increasing number of people commute and move to the cities, but on the other hand, the labour market indicates higher unemployment rates in urban areas than in the surrounding areas. We investigate this phenomenon on regional level by an alternative definition of unemployment rates in which commuting behaviour is integrated. We combine data from the Labour Force Survey with dynamic mobile network data by small area models for the federal state North Rhine-Westphalia in Germany. From a methodical perspective, we use a transformed Fay–Herriot model with bias correction for the estimation of unemployment rates and propose a parametric bootstrap for the mean squared error estimation that includes the bias correction. The performance of the proposed methodology is evaluated in a case study based on official data and in model-based simulations. The results in the application show that unemployment rates (adjusted by commuters) in German cities are lower than traditional official unemployment rates indicate.
en
dc.format.extent
29 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bias correction
en
dc.subject
Fay–Herriot model
en
dc.subject
Mean squared error
en
dc.subject
Small area estimation
en
dc.subject
Unemployment rates
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Estimating regional unemployment with mobile network data for Functional Urban Areas in Germany
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10260-023-00722-0
dcterms.bibliographicCitation.journaltitle
Statistical Methods & Applications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
205
dcterms.bibliographicCitation.pageend
233
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10260-023-00722-0
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1613-981X
refubium.resourceType.provider
WoS-Alert