dc.contributor.author
Fragoso-Garcia, Marco
dc.contributor.author
Wilm, Frauke
dc.contributor.author
Bertram, Christof A.
dc.contributor.author
Merz, Sophie
dc.contributor.author
Schmidt, Anja
dc.contributor.author
Donovan, Taryn
dc.contributor.author
Bartel, Alexander
dc.contributor.author
Diehl, Laura
dc.contributor.author
Puget, Chloe
dc.contributor.author
Klopfleisch, Robert
dc.date.accessioned
2023-10-27T12:37:44Z
dc.date.available
2023-10-27T12:37:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41296
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41017
dc.description.abstract
Microscopic evaluation of hematoxylin and eosin-stained slides is still the diagnostic gold standard for a variety of diseases, including neoplasms. Nevertheless, intra- and interrater variability are well documented among pathologists. So far, computer assistance via automated image analysis has shown potential to support pathologists in improving accuracy and reproducibility of quantitative tasks. In this proof of principle study, we describe a machine-learning-based algorithm for the automated diagnosis of 7 of the most common canine skin tumors: trichoblastoma, squamous cell carcinoma, peripheral nerve sheath tumor, melanoma, histiocytoma, mast cell tumor, and plasmacytoma. We selected, digitized, and annotated 350 hematoxylin and eosin-stained slides (50 per tumor type) to create a database divided into training, n = 245 whole-slide images (WSIs), validation (n = 35 WSIs), and test sets (n = 70 WSIs). Full annotations included the 7 tumor classes and 6 normal skin structures. The data set was used to train a convolutional neural network (CNN) for the automatic segmentation of tumor and nontumor classes. Subsequently, the detected tumor regions were classified patch-wise into 1 of the 7 tumor classes. A majority of patches-approach led to a tumor classification accuracy of the network on the slide-level of 95% (133/140 WSIs), with a patch-level precision of 85%. The same 140 WSIs were provided to 6 experienced pathologists for diagnosis, who achieved a similar slide-level accuracy of 98% (137/140 correct majority votes). Our results highlight the feasibility of artificial intelligence-based methods as a support tool in diagnostic oncologic pathology with future applications in other species and tumor types.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
computer-aided diagnosis
en
dc.subject
computational pathology
en
dc.subject
digital pathology
en
dc.subject
machine learning
en
dc.subject
veterinary oncology
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/03009858231189205
dcterms.bibliographicCitation.journaltitle
Veterinary Pathology
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
865
dcterms.bibliographicCitation.pageend
875
dcterms.bibliographicCitation.volume
60
dcterms.bibliographicCitation.url
https://doi.org/10.1177/03009858231189205
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tierpathologie
refubium.affiliation.other
Institut für Veterinär-Epidemiologie und Biometrie
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1544-2217
refubium.resourceType.provider
WoS-Alert