dc.contributor.author
Dyhr, Michael C. A.
dc.contributor.author
Sadeghi, Mohsen
dc.contributor.author
Moynova, Ralitsa
dc.contributor.author
Knappe, Carolin
dc.contributor.author
Çakmak, Burcu Kepsutlu
dc.contributor.author
Werner, Stephan
dc.contributor.author
Schneider, Gerd
dc.contributor.author
McNally, James
dc.contributor.author
Noé, Frank
dc.contributor.author
Ewers, Helge
dc.date.accessioned
2023-10-13T12:36:43Z
dc.date.available
2023-10-13T12:36:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41115
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40836
dc.description.abstract
Cryo-soft X-ray tomography (cryo-SXT) is a powerful method to investigate the ultrastructure of cells, offering resolution in the tens of nanometer range and strong contrast for membranous structures without requiring labeling or chemical fixation. The short acquisition time and the relatively large field of view leads to fast acquisition of large amounts of tomographic image data. Segmentation of these data into accessible features is a necessary step in gaining biologically relevant information from cryo-soft X-ray tomograms. However, manual image segmentation still requires several orders of magnitude more time than data acquisition. To address this challenge, we have here developed an end-to-end automated 3D segmentation pipeline based on semisupervised deep learning. Our approach is suitable for high-throughput analysis of large amounts of tomographic data, while being robust when faced with limited manual annotations and variations in the tomographic conditions. We validate our approach by extracting three-dimensional information on cellular ultrastructure and by quantifying nanoscopic morphological parameters of filopodia in mammalian cells.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
cryo-soft X-ray microscopy
en
dc.subject
deep learning
en
dc.subject
automated segmentation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
3D surface reconstruction of cellular cryo-soft X-ray microscopy tomograms using semisupervised deep learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2209938120
dcterms.bibliographicCitation.doi
10.1073/pnas.2209938120
dcterms.bibliographicCitation.journaltitle
Proceedings of the National Academy of Sciences (PNAS)
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.volume
120
dcterms.bibliographicCitation.url
https://doi.org/10.1073/pnas.2209938120
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1091-6490
refubium.resourceType.provider
WoS-Alert