dc.contributor.author
Huo, Wenjie
dc.contributor.author
Bakir, Nasim
dc.contributor.author
Gumenyuk, Andrey
dc.contributor.author
Rethmeier, Michael
dc.contributor.author
Wolter, Katinka
dc.date.accessioned
2023-11-24T08:15:50Z
dc.date.available
2023-11-24T08:15:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41069
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40790
dc.description.abstract
Laser beam welding has become widely applied in many industrial fields in recent years. Solidification cracks remain one of the most common welding faults that can prevent a safe welded joint. In civil engineering, convolutional neural networks (CNNs) have been successfully used to detect cracks in roads and buildings by analysing images of the constructed objects. These cracks are found in static objects, whereas the generation of a welding crack is a dynamic process. Detecting the formation of cracks as early as possible is greatly important to ensure high welding quality. In this study, two end-to-end models based on long short-term memory and three-dimensional convolutional networks (3D-CNN) are proposed for automatic crack formation detection. To achieve maximum accuracy with minimal computational complexity, we progressively modify the model to find the optimal structure. The controlled tensile weldability test is conducted to generate long videos used for training and testing. The performance of the proposed models is compared with the classical neural network ResNet-18, which has been proven to be a good transfer learning model for crack detection. The results show that our models can detect the start time of crack formation earlier, while ResNet-18 only detects cracks during the propagation stage.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Deep neural networks
en
dc.subject
Laser beam welding
en
dc.subject
Solidification cracks detection
en
dc.subject
Spatio-temporal features extraction
en
dc.subject
Welding quality control system
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Detection of solidification crack formation in laser beam welding videos of sheet metal using neural networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00521-023-09004-y
dcterms.bibliographicCitation.journaltitle
Neural Computing and Applications
dcterms.bibliographicCitation.number
34
dcterms.bibliographicCitation.pagestart
24315
dcterms.bibliographicCitation.pageend
24332
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00521-023-09004-y
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1433-3058