dc.contributor.author
Bonnet, Édouard
dc.contributor.author
Cabello, Sergio
dc.contributor.author
Mulzer, Wolfgang
dc.date.accessioned
2023-10-09T10:11:16Z
dc.date.available
2023-10-09T10:11:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40816
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40537
dc.description.abstract
Let G be an intersection graph of n geometric objects in the plane. We show that a maximum matching in G can be found in O(ρ3ω/2nω/2) time with high probability, where ρ is the density of the geometric objects and ω>2 is a constant such that n×n matrices can be multiplied in O(nω) time. The same result holds for any subgraph of G, as long as a geometric representation is at hand. For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian elimination, with the fact that geometric intersection graphs have small separators. We also show that in many interesting cases, the maximum matching problem in a general geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum matching in the intersection graph of any family of translates of a convex object in the plane can be found in O(nω/2) time with high probability, and a maximum matching in the intersection graph of a family of planar disks with radii in [1,Ψ] can be found in O(Ψ6log11n+Ψ12ωnω/2) time with high probability.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational geometry
en
dc.subject
Geometric intersection graph
en
dc.subject
Unit-disk graph
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Maximum Matchings in Geometric Intersection Graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00454-023-00564-3
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
550
dcterms.bibliographicCitation.pageend
579
dcterms.bibliographicCitation.volume
70
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-023-00564-3
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0444