Microplastics (MPs) are emerging contaminants in agricultural soil, whereas their effects on the rhizosphere microbial ecosystems and biogeochemical nitrogen cycles during plant growth remain unknown. Here, a 70-day greenhouse experiment was carried out with black and fluvo-aquic soil to evaluate the influence of polyamide (PA), polyethylene (PE), polyester (PES), and polyvinyl chloride (PVC) MPs on the bacterial communities and functions in the soybean rhizosphere. The PA treatment consistently affected the rhizobacterial alpha diversity in the fluvo-aquic soil at soybean vegetative and reproductive growth stages, whereas the PE, PES, and PVC treatments had a short-term effect on the bacterial alpha diversity. At two growth stages, 6 and 23 biomarkers were consistently abundant in the PA treatment in the black soil and fluvo-aquic soil, respectively, and order Rhizobiales was found to be a biomarker for PA MPs contamination in both soils. Additionally, PA treatment decreased bacterial network complexity and tightness, whereas the effects of the PE, PES, and PVC on bacterial co-occurrence patterns varied depending on the soil types. Furthermore, PES and PVC treatments inhibited ammonification processes in the soybean rhizosphere, and PE could temporarily inhibit ammonia oxidation and denitrification processes according to the variations of N-cycling gene abundances. These effects on soil N-cycling also varied with soil types and soybean growth stages. This study provides profound information for understanding of MPs residues on the assembly of the soybean rhizosphere communities and function during plant development.