dc.contributor.author
Makus, Peter
dc.contributor.author
Sens‐Schönfelder, Christoph
dc.contributor.author
Illien, Luc
dc.contributor.author
Walter, Thomas R.
dc.contributor.author
Yates, Alexander
dc.contributor.author
Tilmann, Frederik
dc.date.accessioned
2023-04-21T06:05:41Z
dc.date.available
2023-04-21T06:05:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39028
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38744
dc.description.abstract
Volcanic inflation and deflation often precede eruptions and can lead to seismic velocity changes (dv/v $dv/v$) in the subsurface. Recently, interferometry on the coda of ambient noise‐cross‐correlation functions yielded encouraging results in detecting these changes at active volcanoes. Here, we analyze seismic data recorded at the Klyuchevskoy Volcanic Group in Kamchatka, Russia, between summer of 2015 and summer of 2016 to study signals related to volcanic activity. However, ubiquitous volcanic tremors introduce distortions in the noise wavefield that cause artifacts in the dv/v $dv/v$ estimates masking the impact of physical mechanisms. To avoid such instabilities, we propose a new technique called time‐segmented passive image interferometry. In this technique, we employ a hierarchical clustering algorithm to find periods in which the wavefield can be considered stationary. For these periods, we perform separate noise interferometry studies. To further increase the temporal resolution of our results, we use an AI‐driven approach to find stations with similar dv/v $dv/v$ responses and apply a spatial stack. The impacts of snow load and precipitation dominate the resulting dv/v $dv/v$ time series, as we demonstrate with the help of a simple model. In February 2016, we observe an abrupt velocity drop due to the M7.2 Zhupanov earthquake. Shortly after, we register a gradual velocity increase of about 0.3% at Bezymianny Volcano coinciding with surface deformation observed using remote sensing techniques. We suggest that the inflation of a shallow reservoir related to the beginning of Bezymianny's 2016/2017 eruptive cycle could have caused this local velocity increase and a decorrelation of the correlation function coda.
en
dc.format.extent
21 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
volcano monitoring
en
dc.subject
machine learning
en
dc.subject
ambient noise
en
dc.subject
seismic velocity change
en
dc.subject
time varying earth structure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Deciphering the Whisper of Volcanoes: Monitoring Velocity Changes at Kamchatka's Klyuchevskoy Group With Fluctuating Noise Fields
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2022JB025738
dcterms.bibliographicCitation.doi
10.1029/2022JB025738
dcterms.bibliographicCitation.journaltitle
Journal of Geophysical Research: Solid Earth
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
128
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2022JB025738
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2169-9356
refubium.resourceType.provider
DeepGreen