dc.contributor.author
Yang, Wangfei
dc.contributor.author
Templeton, Clark
dc.contributor.author
Rosenberger, David
dc.contributor.author
Bittracher, Andreas
dc.contributor.author
Nüske, Feliks
dc.contributor.author
Noé, Frank
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2023-04-14T12:15:19Z
dc.date.available
2023-04-14T12:15:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38895
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38611
dc.description.abstract
The aim of molecular coarse-graining approaches is to recover relevant physical properties of the molecular system via a lower-resolution model that can be more efficiently simulated. Ideally, the lower resolution still accounts for the degrees of freedom necessary to recover the correct physical behavior. The selection of these degrees of freedom has often relied on the scientist’s chemical and physical intuition. In this article, we make the argument that in soft matter contexts desirable coarse-grained models accurately reproduce the long-time dynamics of a system by correctly capturing the rare-event transitions. We propose a bottom-up coarse-graining scheme that correctly preserves the relevant slow degrees of freedom, and we test this idea for three systems of increasing complexity. We show that in contrast to this method existing coarse-graining schemes such as those from information theory or structure-based approaches are not able to recapitulate the slow time scales of the system.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Optimization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Slicing and Dicing: Optimal Coarse-Grained Representation to Preserve Molecular Kinetics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acscentsci.2c01200
dcterms.bibliographicCitation.journaltitle
ACS Central Science
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
186
dcterms.bibliographicCitation.pageend
196
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acscentsci.2c01200
refubium.affiliation
Physik
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2374-7951
refubium.resourceType.provider
WoS-Alert