dc.contributor.author
Friebertshäuser, Kai
dc.contributor.author
Thomas, Marita
dc.contributor.author
Tornquist, Sven
dc.contributor.author
Weinberg, Kerstin
dc.contributor.author
Wieners, Christian
dc.date.accessioned
2023-04-12T08:17:44Z
dc.date.available
2023-04-12T08:17:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38828
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38544
dc.description.abstract
In this contribution we present analytical results on a model for dynamic fracture in viscoelastic materials at small strains that have been obtained in full depth in [1]. In the model, the sharp crack interface is regularized with a phase-field approximation, and for the phase-field variable a viscous evolution with a quadratic dissipation potential is employed. A non-smooth penalization prevents material healing. The viscoelastic momentum balance is formulated as a first order system and coupled in a nonlinear way to the non-smooth evolution equation of the phase field. We give a full discretization in time and space using a discontinuous Galerkin method for the first-order system. We discuss the existence of discrete solutions and, with the step size in space and time tending to zero, their convergence to a suitable notion of weak solution of the system. Eventually, we provide a numerical benchmark and compare it with simulation results found in [2].
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Dynamic Phase-Field Fracture
en
dc.subject
Viscoelastic Materials
en
dc.subject
First-Order Formulation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Dynamic Phase-Field Fracture in Viscoelastic Materials using a First-Order Formulation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e202200249
dcterms.bibliographicCitation.doi
10.1002/pamm.202200249
dcterms.bibliographicCitation.journaltitle
Proceedings in Applied Mathematics & Mechanics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
22
dcterms.bibliographicCitation.url
https://doi.org/10.1002/pamm.202200249
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1617-7061