dc.contributor.author
Liu, Si
dc.contributor.author
Zaharieva, Ivelina
dc.contributor.author
D Amario, Luca
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Kubella, Paul
dc.contributor.author
Yang, Fan
dc.contributor.author
Beyer, Paul
dc.contributor.author
Haumann, Michael
dc.contributor.author
Dau, Holger
dc.date.accessioned
2023-03-28T13:10:49Z
dc.date.available
2023-03-28T13:10:49Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38486
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38204
dc.description.abstract
The oxygen evolution reaction (OER) is pivotal in sustainable fuel production. Neutral-pH OER reduces operational risks and enables direct coupling to electrochemical CO2 reduction, but typically is hampered by low current densities. Here, the rate limitations in neutral-pH OER are clarified. Using cobalt-based catalyst films and phosphate ions as essential electrolyte bases, current–potential curves are recorded and simulated. Operando X-ray spectroscopy shows the potential-dependent structural changes independent of the electrolyte phosphate concentration. Operando Raman spectroscopy uncovers electrolyte acidification at a micrometer distance from the catalyst surface, limiting the Tafel slope regime to low current densities. The electrolyte proton transport is facilitated by diffusion of either phosphate ions (base pathway) or H3O+ ions (water pathway). The water pathway is not associated with an absolute current limit but is energetically inefficient due to the Tafel-slope increase by 60 mV dec−1, shown by an uncomplicated mathematical model. The base pathway is a specific requirement in neutral-pH OER and can support high current densities, but only with accelerated buffer-base diffusion. Catalyst internal phosphate diffusion or other internal transport mechanisms do not limit the current densities. A proof-of-principle experiment shows that current densities exceeding 1 A cm−2 can also be achieved in neutral-pH OER.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electrocatalytic Water Oxidation
en
dc.subject
Amorphous Cobalt-Phosphate Catalyst System
en
dc.subject
Oxygen evolution reaction (OER)
en
dc.subject
Sustainable fuel production
en
dc.subject
Neutral-pH OER
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Electrocatalytic water oxidation at neutral pH–deciphering the rate constraints for an amorphous cobalt‐phosphate catalyst system
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
92221
dcterms.bibliographicCitation.articlenumber
2202914
dcterms.bibliographicCitation.doi
10.1002/aenm.202202914
dcterms.bibliographicCitation.journaltitle
Advanced energy materials
dcterms.bibliographicCitation.number
46
dcterms.bibliographicCitation.originalpublishername
Wiley-VCH
dcterms.bibliographicCitation.originalpublisherplace
Weinheim
dcterms.bibliographicCitation.volume
12 (2022)
dcterms.bibliographicCitation.url
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202914
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.funding
DEAL Wiley
refubium.note.author
Open Access Funding provided by Freie Universität Berlin.
en
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1614-6832
dcterms.isPartOf.eissn
1614-6840