dc.contributor.author
Bertram, Christof A.
dc.contributor.author
Marzahl, Christian
dc.contributor.author
Bartel, Alexander
dc.contributor.author
Stayt, Jason
dc.contributor.author
Bonsembiante, Federico
dc.contributor.author
Beeler-Marfisi, Janet
dc.contributor.author
Barton, Ann Kristin
dc.contributor.author
Brocca, Ginevra
dc.contributor.author
Gelain, Maria E.
dc.contributor.author
Klopfleisch, Robert
dc.date.accessioned
2023-02-24T14:01:13Z
dc.date.available
2023-02-24T14:01:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38107
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37820
dc.description.abstract
Exercise-induced pulmonary hemorrhage (EIPH) is a relevant respiratory disease in sport horses, which can be diagnosed by examination of bronchoalveolar lavage fluid (BALF) cells using the total hemosiderin score (THS). The aim of this study was to evaluate the diagnostic accuracy and reproducibility of annotators and to validate a deep learning-based algorithm for the THS. Digitized cytological specimens stained for iron were prepared from 52 equine BALF samples. Ten annotators produced a THS for each slide according to published methods. The reference methods for comparing annotator’s and algorithmic performance included a ground truth dataset, the mean annotators’ THSs, and chemical iron measurements. Results of the study showed that annotators had marked interobserver variability of the THS, which was mostly due to a systematic error between annotators in grading the intracytoplasmatic hemosiderin content of individual macrophages. Regarding overall measurement error between the annotators, 87.7% of the variance could be reduced by using standardized grades based on the ground truth. The algorithm was highly consistent with the ground truth in assigning hemosiderin grades. Compared with the ground truth THS, annotators had an accuracy of diagnosing EIPH (THS of < or ≥ 75) of 75.7%, whereas, the algorithm had an accuracy of 92.3% with no relevant differences in correlation with chemical iron measurements. The results show that deep learning-based algorithms are useful for improving reproducibility and routine applicability of the THS. For THS by experts, a diagnostic uncertainty interval of 40 to 110 is proposed. THSs within this interval have insufficient reproducibility regarding the EIPH diagnosis.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
artificial intelligence
en
dc.subject
automated image analysis
en
dc.subject
bronchoalveolar lavage fluid
en
dc.subject
computational pathology
en
dc.subject
digital pathology
en
dc.subject
pulmonary hemorrhage
en
dc.subject
respiratory disease
en
dc.subject
total hemosiderin score
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
Cytologic scoring of equine exercise-induced pulmonary hemorrhage: Performance of human experts and a deep learning-based algorithm
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/03009858221137582
dcterms.bibliographicCitation.journaltitle
Veterinary Pathology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
75
dcterms.bibliographicCitation.pageend
85
dcterms.bibliographicCitation.volume
60
dcterms.bibliographicCitation.url
https://doi.org/10.1177/03009858221137582
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tierpathologie
refubium.affiliation.other
Institut für Veterinär-Epidemiologie und Biometrie
refubium.affiliation.other
Klinik für Pferde
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1544-2217
refubium.resourceType.provider
WoS-Alert