dc.contributor.author
Wahada, Mohamed Amine
dc.contributor.author
Şaşıoğlu, Ersoy
dc.contributor.author
Hoppe, Wolfgang
dc.contributor.author
Zhou, Xilin
dc.contributor.author
Deniz, Hakan
dc.contributor.author
Rouzegar, Reza
dc.contributor.author
Kampfrath, Tobias
dc.contributor.author
Mertig, Ingrid
dc.contributor.author
Parkin, Stuart S. P.
dc.contributor.author
Woltersdorf, Georg
dc.date.accessioned
2023-02-17T06:22:34Z
dc.date.available
2023-02-17T06:22:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37923
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37639
dc.description.abstract
Ferromagnet/heavy metal bilayers represent a central building block for spintronic devices where the magnetization of the ferromagnet can be controlled by spin currents generated in the heavy metal. The efficiency of spin current generation is paramount. Equally important is the efficient transfer of this spin current across the ferromagnet/heavy metal interface. Here, we show theoretically and experimentally that for Ta as heavy metal the interface only partially transmits the spin current while this effect is absent when Pt is used as heavy metal. This is due to magnetic moment reduction at the interface caused by 3d–5d hybridization effects. We show that this effect can be avoided by atomically thin interlayers. On the basis of our theoretical model we conclude that this is a general effect and occurs for all 5d metals with less than half-filled 5d shell.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Magnesium oxide
en
dc.subject
Quantum mechanics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Atomic Scale Control of Spin Current Transmission at Interfaces
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
91629
dcterms.bibliographicCitation.doi
10.1021/acs.nanolett.1c04358
dcterms.bibliographicCitation.journaltitle
Nano Letters
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.originalpublishername
ACS Publ.
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
3539
dcterms.bibliographicCitation.pageend
3544
dcterms.bibliographicCitation.volume
22 (2022)
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04358
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1530-6984
dcterms.isPartOf.eissn
1530-6992