dc.contributor.author
Dyhr, Michael C. A.
dc.contributor.author
Sadeghi, Mohsen
dc.contributor.author
Moynova, Ralitsa
dc.contributor.author
Knappe, Carolin
dc.contributor.author
Kepsutlu, Burcu
dc.contributor.author
Werner, Stephan
dc.contributor.author
Schneider, Gerd
dc.contributor.author
McNally, James
dc.contributor.author
Noe, Frank
dc.contributor.author
Ewers, Helge
dc.date.accessioned
2023-02-07T10:35:57Z
dc.date.available
2023-02-07T10:35:57Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37868
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37581
dc.description.abstract
Cryo-soft X-ray tomography (cryo-SXT) is a powerful method to investigate the ultrastructure of cells, offering resolution in the tens of nm range and strong contrast for membranous structures without requirement for labeling or chemical fixation. The short acquisition time and the relatively large volumes acquired allow for fast acquisition of large amounts of tomographic image data. Segmentation of these data into accessible features is a necessary step in gaining biologically relevant information from cryo-soft X-ray tomograms. However, manual image segmentation still requires several orders of magnitude more time than data acquisition. To address this challenge, we have here developed an end-to-end automated 3D-segmentation pipeline based on semi-supervised deep learning. Our approach is suitable for high-throughput analysis of large amounts of tomographic data, while being robust when faced with limited manual annotations and variations in the tomographic conditions. We validate our approach by extracting three-dimensional information on cellular ultrastructure and by quantifying nanoscopic morphological parameters of filopodia in mammalian cells.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nd/4.0/
dc.subject
cryo-soft X-ray microscopy tomograms
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
3D-surface reconstruction of cellular cryo-soft X-ray microscopy tomograms using semi-supervised deep learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1101/2022.05.16.492055
dcterms.bibliographicCitation.journaltitle
bioRxiv
dcterms.bibliographicCitation.number
May 16 (2022)
dcterms.bibliographicCitation.url
https://doi.org/10.1101/2022.05.16.492055
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.isSupplementedBy.doi
http://dx.doi.org/10.17169/refubium-37222
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access