dc.contributor.author
Wintjen, Pascal
dc.contributor.author
Schrader, Frederik
dc.contributor.author
Schaap, Martijn
dc.contributor.author
Beudert, Burkhard
dc.contributor.author
Kranenburg, Richard
dc.contributor.author
Brümmer, Christian
dc.date.accessioned
2023-01-16T08:12:24Z
dc.date.available
2023-01-16T08:12:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37595
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37310
dc.description.abstract
To monitor the effect of current nitrogen emissions and mitigation strategies, total (wet + dry) atmospheric nitrogen deposition to forests is commonly estimated using chemical transport models or canopy budget models in combination with throughfall measurements. Since flux measurements of reactive nitrogen (Nr) compounds are scarce, dry deposition process descriptions as well as the calculated flux estimates and annual budgets are subject to considerable uncertainties. In this study, we compared four different approaches to quantify annual dry deposition budgets of total reactive nitrogen (ΣNr) at a mixed forest site situated in the Bavarian Forest National Park, Germany. Dry deposition budgets were quantified based on (I) 2.5 years of eddy covariance flux measurements with the Total Reactive Atmospheric Nitrogen Converter (TRANC); (II) an in situ application of the bidirectional inferential flux model DEPAC (Deposition of Acidifying Compounds), here called DEPAC-1D; (III) a simulation with the chemical transport model LOTOS-EUROS (Long-Term Ozone Simulation – European Operational Smog) v2.0, using DEPAC as dry deposition module; and (IV) a canopy budget technique (CBT).
Averaged annual ΣNr dry deposition estimates determined from TRANC measurements were 4.7 ± 0.2 and 4.3 ± 0.4 kg N ha−1 a−1, depending on the gap-filling approach. DEPAC-1D-modeled dry deposition, using concentrations and meteorological drivers measured at the site, was 5.8 ± 0.1 kg N ha−1 a−1. In comparison to TRANC fluxes, DEPAC-1D estimates were systematically higher during summer and in close agreement in winter. Modeled ΣNr deposition velocities (vd) of DEPAC-1D were found to increase with lower temperatures and higher relative humidity and in the presence of wet leaf surfaces, particularly from May to September. This observation was contrary to TRANC-observed fluxes. LOTOS-EUROS-modeled annual dry deposition was 6.5 ± 0.3 kg N ha−1 a−1 for the site-specific weighting of land-use classes within the site's grid cell. LOTOS-EUROS showed substantial discrepancies to measured ΣNr deposition during spring and autumn, which was related to an overestimation of ammonia (NH3) concentrations by a factor of 2 to 3 compared to measured values as a consequence of a mismatch between gridded input NH3 emissions and the site's actual (rather low) pollution climate. According to LOTOS-EUROS predictions, ammonia contributed most to modeled input ΣNr concentrations, whereas measurements showed NOx as the prevailing compound in ΣNr concentrations. Annual deposition estimates from measurements and modeling were in the range of minimum and maximum estimates determined from CBT being at 3.8 ± 0.5 and 6.7 ± 0.3 kg N ha−1 a−1, respectively. By adding locally measured wet-only deposition, we estimated an annual total nitrogen deposition input between 11.5 and 14.8 kg N ha−1 a−1, which is within the critical load ranges proposed for deciduous and coniferous forests.
en
dc.format.extent
25 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
forest–atmosphere exchange
en
dc.subject
reactive nitrogen
en
dc.subject
remote region
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5194/bg-19-5287-2022
dcterms.bibliographicCitation.journaltitle
Biogeosciences
dcterms.bibliographicCitation.number
22
dcterms.bibliographicCitation.pagestart
5287
dcterms.bibliographicCitation.pageend
5311
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.5194/bg-19-5287-2022
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1726-4189
refubium.resourceType.provider
WoS-Alert