dc.contributor.author
Fedoseeva, Yuliya V.
dc.contributor.author
Shlyakhova, Elena V.
dc.contributor.author
Stolyarova, Svetlana G.
dc.contributor.author
Vorfolomeeva, Anna A.
dc.contributor.author
Nishchakova, Alina D.
dc.contributor.author
Grebenkina, Mariya A.
dc.contributor.author
Makarova, Anna A.
dc.contributor.author
Kovalenko, Konstantin A.
dc.contributor.author
Okotrub, Alexander V.
dc.contributor.author
Bulusheva, Lyubov G.
dc.date.accessioned
2022-12-30T13:49:45Z
dc.date.available
2022-12-30T13:49:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37380
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37092
dc.description.abstract
Carbon nanomaterials possessing a high specific surface area, electrical conductivity and chemical stability are promising electrode materials for alkali metal-ion batteries and supercapacitors. In this work, we study nitrogen-doped carbon (NC) obtained by chemical vapor deposition of acetonitrile over the pyrolysis product of calcium tartrate, and activated with a potassium hydroxide melt followed by hydrothermal treatment in an aqueous ammonia solution. Such a two-stage chemical modification leads to an increase in the specific surface area up to 1180 m2 g−1, due to the formation of nanopores 0.6–1.5 nm in size. According to a spectroscopic study, the pore edges are decorated with imine, amine, and amide groups. In sodium-ion batteries, the modified material mNC exhibits a stable reversible gravimetric capacity in the range of 252–160 mA h g−1 at current densities of 0.05–1.00 A g−1, which is higher than the corresponding capacity of 142–96 mA h g−1 for the initial NC sample. In supercapacitors, the mNC demonstrates the highest specific capacitance of 172 F g−1 and 151 F g−1 at 2 V s−1 in 1 M H2SO4 and 6 M KOH electrolytes, respectively. The improvement in the electrochemical performance of mNC is explained by the cumulative contribution of a developed pore structure, which ensures rapid diffusion of ions, and the presence of imine, amine, and amide groups, which enhance binding with sodium ions and react with protons or hydroxyl ions. These findings indicate that hydrogenated nitrogen functional groups grafted to the edges of graphitic domains are responsible for Na+ ion storage sites and surface redox reactions in acidic and alkaline electrolytes, making modified carbon a promising electrode material for electrochemical applications.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
N-doped porous carbon
en
dc.subject
potassium hydroxide melt treatment
en
dc.subject
ammonia treatment
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Electrochemical Performance of Potassium Hydroxide and Ammonia Activated Porous Nitrogen-Doped Carbon in Sodium-Ion Batteries and Supercapacitors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
198
dcterms.bibliographicCitation.doi
10.3390/inorganics10110198
dcterms.bibliographicCitation.journaltitle
Inorganics
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.3390/inorganics10110198
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2304-6740