dc.contributor.author
Luther, Robert
dc.contributor.author
Raducan, Sabina D.
dc.contributor.author
Burger, Christoph
dc.contributor.author
Wünnemann, Kai
dc.contributor.author
Jutzi, Martin
dc.contributor.author
Schäfer, Christoph M.
dc.contributor.author
Koschny, Detlef
dc.contributor.author
Davison, Thomas M.
dc.contributor.author
Collins, Gareth S.
dc.contributor.author
Zhang, Yun
dc.contributor.author
Michel, Patrick
dc.date.accessioned
2022-11-21T09:14:26Z
dc.date.available
2022-11-21T09:14:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36943
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36656
dc.description.abstract
In 2022 September, the DART spacecraft (NASA’s contribution to the Asteroid Impact & Deflection Assessment (AIDA) collaboration) will impact the asteroid Dimorphos, the secondary in the Didymos system. The crater formation and material ejection will affect the orbital period. In 2027, Hera (ESA’s contribution to AIDA) will investigate the system, observe the crater caused by DART, and characterize Dimorphos. Before Hera’s arrival, the target properties will not be well-constrained. The relationships between observed orbital change and specific target properties are not unique, but Hera’s observations will add additional constraints for the analysis of the impact event, which will narrow the range of feasible target properties. In this study, we use three different shock physics codes to simulate momentum transfer from impactor to target and investigate the agreement between the results from the codes for well-defined target materials. In contrast to previous studies, care is taken to use consistent crushing behavior (e.g., distension as a function of pressure) for a given porosity for all codes. First, we validate the codes against impact experiments into a regolith simulant. Second, we benchmark the codes at the DART impact scale for a range of target material parameters (10%–50% porosity, 1.4–100 kPa cohesion). Aligning the crushing behavior improves the consistency of the derived momentum enhancement between the three codes to within +/−5% for most materials used. Based on the derived mass–velocity distributions from all three codes, we derive scaling parameters that can be used for studies of the ejecta curtain.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Impact Shock Physics Codes
en
dc.subject
Benchmarking
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Momentum Enhancement during Kinetic Impacts in the Low-intermediate-strength Regime: Benchmarking and Validation of Impact Shock Physics Codes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.3847/PSJ/ac8b89
dcterms.bibliographicCitation.journaltitle
The Planetary Science Journal
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.originalpublishername
The American Astronomical Society
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.3847/PSJ/ac8b89
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-3338
refubium.resourceType.provider
DeepGreen