dc.contributor.author
Reible, Benedikt
dc.contributor.author
Hartmann, Carsten
dc.contributor.author
Delle Site, Luigi
dc.date.accessioned
2022-10-13T08:58:28Z
dc.date.available
2022-10-13T08:58:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36561
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36274
dc.description.abstract
We generalise the two-sided Bogoliubov inequality for classical particles (Delle Site et al. in J Stat Mech Theory Exp 083201, 2017 to systems of quantum particles. As in the classical set-up, the inequality leads to upper and lower bounds for the free energy difference associated with the partitioning of a large system into smaller, independent subsystems. From a thermodynamic modelling point of view, the free energy difference determines the finite size correction needed to consistently treat a small system as a representation of a large system. Applications of the bounds to quantify finite size effects are ubiquitous in physics, chemistry, material science, or biology, to name just a few; in particular, it is relevant for molecular dynamics simulations in which a small portion of a system is usually taken as representative of the idealized large system.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Many-particle quantum systems
en
dc.subject
Interface energy
en
dc.subject
Finite size effects
en
dc.subject
Molecular simulations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Two-sided Bogoliubov inequality to estimate finite size effects in quantum molecular simulations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
97
dcterms.bibliographicCitation.doi
10.1007/s11005-022-01586-3
dcterms.bibliographicCitation.journaltitle
Letters in Mathematical Physics
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
112
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11005-022-01586-3
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-0530
refubium.resourceType.provider
WoS-Alert