dc.contributor.author
Böttcher, Julia
dc.contributor.author
Parczyk, Olaf
dc.contributor.author
Sgueglia, Amedeo
dc.contributor.author
Skokan, Jozef
dc.date.accessioned
2023-01-02T10:35:01Z
dc.date.available
2023-01-02T10:35:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/36241
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35957
dc.description.abstract
We study the problem of finding pairwise vertex-disjoint triangles in the randomly perturbed graph model, which is the union of any n -vertex graph G satisfying a given minimum degree condition and the binomial random graph G(n,p) . We prove that asymptotically almost surely G∪G(n,p) contains at least min{δ(G),⌊n/3⌋} pairwise vertex-disjoint triangles, provided p≥Clogn/n , where C
is a large enough constant. This is a perturbed version of an old result of Dirac.
Our result is asymptotically optimal and answers a question of Han, Morris, and Treglown [RSA, 2021, no. 3, 480–516] in a strong form. We also prove a stability version of our result, which in the case of pairwise vertex-disjoint triangles extends a result of Han, Morris, and Treglown [RSA, 2021, no. 3, 480–516]. Together with a result of Balogh, Treglown, and Wagner [CPC, 2019, no. 2, 159–176], this fully resolves the existence of triangle factors in randomly perturbed graphs.
We believe that the methods introduced in this paper are useful for a variety of related problems: we discuss possible generalisations to clique factors, cycle factors, and 2
-universality.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
random graphs
en
dc.subject
randomly perturbed graphs
en
dc.subject
triangle factor
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Triangles in randomly perturbed graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1017/S0963548322000153
dcterms.bibliographicCitation.journaltitle
Combinatorics, Probability and Computing
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
91
dcterms.bibliographicCitation.pageend
121
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1017/S0963548322000153
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Open Access in Konsortiallizenz - Cambridge
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1469-2163