dc.contributor.author
Niggemann, Nils
dc.contributor.author
Reuther, Johannes
dc.contributor.author
Sbierski, Björn
dc.date.accessioned
2022-08-08T11:19:01Z
dc.date.available
2022-08-08T11:19:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35809
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35524
dc.description.abstract
We employ a recently developed variant of the functional renormalization group method for spin systems, the so-called pseudo Majorana functional renormalization group, to investigate three-dimensional spin-1/2 Heisenberg models at finite temperatures. We study unfrustrated and frustrated Heisenberg systems on the simple cubic and pyrochlore lattices. Comparing our results with other quantum many-body techniques, we demonstrate a high quantitative accuracy of our method. Particularly, for the unfrustrated simple cubic lattice antiferromagnet ordering temperatures obtained from finite-size scaling of one-loop data deviate from error controlled quantum Monte Carlo results by ∼5% and we further confirm the established values for the critical exponent ν and the anomalous dimension η. As the PMFRG yields results in good agreement with QMC, but remains applicable when the system is frustrated, we next treat the pyrochlore Heisenberg antiferromagnet as a paradigmatic magnetically disordered system and find nearly perfect agreement of our two-loop static homogeneous susceptibility with other methods. We further investigate the broadening of pinch points in the spin structure factor as a result of quantum and thermal fluctuations and confirm a finite width in the extrapolated limit T→0. While extensions towards higher loop orders ℓ seem to systematically improve our approach for magnetically disordered systems we also discuss subtleties when increasing ℓ in the presence of magnetic order. Overall, the pseudo Majorana functional renormalization group is established as a powerful many-body technique in quantum magnetism with a wealth of possible future applications.
en
dc.format.extent
27 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
functional renormalization group method
en
dc.subject
spin systems
en
dc.subject
three-dimensional quantum Heisenberg models
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Quantitative functional renormalization for three-dimensional quantum Heisenberg models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
156
dcterms.bibliographicCitation.doi
10.21468/SciPostPhys.12.5.156
dcterms.bibliographicCitation.journaltitle
SciPost Physics
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.21468/SciPostPhys.12.5.156
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2542-4653
refubium.resourceType.provider
WoS-Alert