dc.contributor.author
Bierhance, Genaro
dc.contributor.author
Markou, Anastasios
dc.contributor.author
Gueckstock, Oliver
dc.contributor.author
Rouzegar, Reza
dc.contributor.author
Behovits, Yannic
dc.contributor.author
Chekhov, Alexander L.
dc.contributor.author
Wolf, Martin
dc.contributor.author
Seifert, Tom S.
dc.contributor.author
Felser, Claudia
dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2022-08-08T06:07:10Z
dc.date.available
2022-08-08T06:07:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35781
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35496
dc.description.abstract
Magnetic Weyl semimetals are an emerging material class that combines magnetic order and a topologically non-trivial band structure. Here, we study ultrafast optically driven spin injection from thin films of the magnetic Weyl semimetals Co2MnGa and Co2MnAl into an adjacent Pt layer by means of terahertz emission spectroscopy. We find that (i) Co2MnGa and Co2MnAl are efficient terahertz spin-current generators reaching efficiencies of typical 3d-transition-metal ferromagnets such as Fe. (ii) The relaxation of the spin current provides an estimate of the electron-spin relaxation time of Co2MnGa (170 fs) and Co2MnAl (100 fs), which is comparable to Fe (90 fs). Both observations are consistent with a simple analytical model and highlight the large potential of magnetic Weyl semimetals as spin-current sources in terahertz spintronic devices. Finally, our results provide a strategy to identify magnetic materials that offer maximum spin-current amplitudes for a given deposited optical energy density.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
magnetic Weyl semimetals
en
dc.subject
ultrafast optically driven spin injection
en
dc.subject
terahertz emission spectroscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Spin-voltage-driven efficient terahertz spin currents from the magnetic Weyl semimetals Co2MnGa and Co2MnAl
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
91631
dc.identifier.sepid
91631
dcterms.bibliographicCitation.articlenumber
082401
dcterms.bibliographicCitation.doi
10.1063/5.0080308
dcterms.bibliographicCitation.journaltitle
Applied Physics Letters
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
120
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0080308
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1077-3118
refubium.resourceType.provider
WoS-Alert