dc.contributor.author
Walter, Paul
dc.contributor.author
Groß, Marcus
dc.contributor.author
Schmid, Timo
dc.contributor.author
Weimer, Katja
dc.date.accessioned
2022-08-05T14:30:53Z
dc.date.available
2022-08-05T14:30:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35772
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35487
dc.description.abstract
The estimation of poverty and inequality indicators based on survey data is trivial as long as the variable of interest (e.g., income or consumption) is measured on a metric scale. However, estimation is not directly possible, using standard formulas, when the income variable is grouped due to confidentiality constraints or in order to decrease item nonresponse. We propose an iterative kernel density algorithm that generates metric pseudo samples from the grouped variable for the estimation of indicators. The corresponding standard errors are estimated by a non-parametric bootstrap that accounts for the additional uncertainty due to the grouping. The algorithm enables the use of survey weights and household equivalence scales. The proposed method is applied to the German Microcensus for estimating the regional distribution of poverty and inequality in Germany.
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Direct estimation
en
dc.subject
Interval-censored data
en
dc.subject
non-parametric estimation
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Iterative Kernel Density Estimation Applied to Grouped Data: Estimating Poverty and Inequality Indicators from the German Microcensus
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.2478/jos-2022-0027
dcterms.bibliographicCitation.journaltitle
Journal of Official Statistics
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
599
dcterms.bibliographicCitation.pageend
635
dcterms.bibliographicCitation.volume
38
dcterms.bibliographicCitation.url
https://doi.org/10.2478/jos-2022-0027
refubium.affiliation
Wirtschaftswissenschaft
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2001-7367
refubium.resourceType.provider
WoS-Alert