dc.contributor.author
Invernizzi, Michele
dc.contributor.author
Parrinello, Michele
dc.date.accessioned
2022-08-05T14:11:02Z
dc.date.available
2022-08-05T14:11:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35770
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-35485
dc.description.abstract
In adaptive-bias enhanced sampling methods, a bias potential is added to the system to drive transitions between metastable states. The bias potential is a function of a few collective variables and is gradually modified according to the underlying free energy surface. We show that when the collective variables are suboptimal, there is an exploration–convergence tradeoff, and one must choose between a quickly converging bias that will lead to fewer transitions or a slower to converge bias that can explore the phase space more efficiently but might require a much longer time to produce an accurate free energy estimate. The recently proposed on-the-fly probability enhanced sampling (OPES) method focuses on fast convergence, but there are cases where fast exploration is preferred instead. For this reason, we introduce a new variant of the OPES method that focuses on quickly escaping metastable states at the expense of convergence speed. We illustrate the benefits of this approach in prototypical systems and show that it outperforms the popular metadynamics method.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Computer simulations
en
dc.subject
Mathematical methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Exploration vs Convergence Speed in Adaptive-Bias Enhanced Sampling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jctc.2c00152
dcterms.bibliographicCitation.journaltitle
Journal of Chemical Theory and Computation
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
3988
dcterms.bibliographicCitation.pageend
3996
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jctc.2c00152
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1549-9626
refubium.resourceType.provider
WoS-Alert