dc.contributor.author
del Razo, Mauricio J.
dc.contributor.author
Frömberg, Daniela
dc.contributor.author
Straube, Arthur V.
dc.contributor.author
Schütte, Christof
dc.contributor.author
Höfling, Felix
dc.contributor.author
Winkelmann, Stefanie
dc.date.accessioned
2022-06-03T08:32:56Z
dc.date.available
2022-06-03T08:32:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/35218
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34936
dc.description.abstract
The modeling and simulation of stochastic reaction–diffusion processes is a topic of steady interest that is approached with a wide range of methods. At the level of particle-resolved descriptions, where chemical reactions are coupled to the spatial diffusion of individual particles, there exist comprehensive numerical simulation schemes, while the corresponding mathematical formalization is relatively underdeveloped. The aim of this paper is to provide a framework to systematically formulate the probabilistic evolution equation, termed chemical diffusion master equation (CDME), that governs particle-based stochastic reaction–diffusion processes. To account for the non-conserved and unbounded particle number of this type of open systems, we employ a classical analogue of the quantum mechanical Fock space that contains the symmetrized probability densities of the many-particle configurations in space. Following field-theoretical ideas of second quantization, we introduce creation and annihilation operators that act on single-particle densities and provide natural representations of symmetrized probability densities as well as of reaction and diffusion operators. These operators allow us to consistently and systematically formulate the CDME for arbitrary reaction schemes. The resulting form of the CDME further serves as the foundation to derive more coarse-grained descriptions of reaction–diffusion dynamics. In this regard, we show that a discretization of the evolution equation by projection onto a Fock subspace generated by a finite set of single-particle densities leads to a generalized form of the well-known reaction–diffusion master equation, which supports non-local reactions between grid cells and which converges properly in the continuum limit.
en
dc.format.extent
59 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Particle-based reaction–diffusion models
en
dc.subject
Reaction–diffusion master equation
en
dc.subject
Fock space methods
en
dc.subject
Classical many-particle systems
en
dc.subject
Galerkin projection
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A probabilistic framework for particle-based reaction–diffusion dynamics using classical Fock space representations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
49
dcterms.bibliographicCitation.doi
10.1007/s11005-022-01539-w
dcterms.bibliographicCitation.journaltitle
Letters in Mathematical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
112
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11005-022-01539-w
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-0530