dc.contributor.author
Bolognini, Davide
dc.contributor.author
Macchia, Antonio
dc.contributor.author
Strazzanti, Francesco
dc.contributor.author
Welker, Volkmar
dc.date.accessioned
2022-04-19T11:57:24Z
dc.date.available
2022-04-19T11:57:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34727
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34447
dc.description.abstract
We explore the dependence of the Betti numbers of monomial ideals on the characteristic of the field. A first observation is that for a fixed prime p either the i-th Betti number of all high enough powers of a monomial ideal differs in characteristic 0 and in characteristic p or it is the same for all high enough powers. In our main results, we provide constructions and explicit examples of monomial ideals all of whose powers have some characteristic-dependent Betti numbers or whose asymptotic regularity depends on the field. We prove that, adding a monomial on new variables to a monomial ideal allows to spread the characteristic dependence to all powers. For any given prime p, this produces an edge ideal such that all its powers have some Betti numbers that are different over Q and over Zp. Moreover, we show that, for every r≥0 and i≥3 there is a monomial ideal I such that some coefficient in a degree ≥r of the Kodiyalam polynomials P3(I),…,Pi+r(I) depends on the characteristic. We also provide a summary of related results and speculate about the behavior of other combinatorially defined ideals.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Powers of monomial ideals
en
dc.subject
Betti numbers
en
dc.subject
Betti splitting
en
dc.subject
Field dependence
en
dc.subject
Castelnuovo–Mumford regularity
en
dc.subject
Binomial edge ideals
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Powers of monomial ideals with characteristic-dependent Betti numbers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
26
dcterms.bibliographicCitation.doi
10.1007/s40687-022-00318-2
dcterms.bibliographicCitation.journaltitle
Research in the Mathematical Sciences
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s40687-022-00318-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2197-9847